On Degree-Based Topological Indices for Strong Double Graphs

نویسندگان

چکیده

A topological index is a characteristic value which represents some structural properties of chemical graph. We study strong double graphs and their generalization to compute Zagreb indices coindices. provide explicit computing formulas along with an algorithm generate verify the results. also find relation between these indices. 3D graphical representation are presented understand dynamics aforementioned

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

Distance-Based Topological Indices and Double graph

Let $G$ be a connected graph, and let $D[G]$ denote the double graph of $G$. In this paper, we first derive closed-form formulas for different distance based topological indices for $D[G]$ in terms of that of $G$. Finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topologica...

متن کامل

On ev-degree and ve-degree topological indices

Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...

متن کامل

Extremal problems for degree-based topological indices

For a graph G, let σ(G) = ∑ uv∈E(G) 1 √ dG(u)+dG(v) ; this defines the sum-connectivity index σ(G). More generally, given a positive function t, the edge-weight t-index t(G) is given by t(G) = ∑ uv∈E(G) t(ω(uv)), where ω(uv) = dG(u) + dG(v). We consider extremal problems for the t-index over various families of graphs. The sum-connectivity index satisfies the conditions imposed on t in each ext...

متن کامل

Topological Indices Based on Topological Distances in Molecular Graphs

Three new distance—based topological indices are described; two of them, D and D1 (mean distance topological indices, for any graphs, and for acyclic graphs, respectively) have a modest discriminating ability but may be useful for correlations, e. g. with octane numbers. The third index, J (average distance sum connectivity) is the least degenerate single topological index proposed till now. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemistry

سال: 2021

ISSN: ['2090-9063', '2090-9071']

DOI: https://doi.org/10.1155/2021/4852459